Development and validation of a quantitative real-time polymerase chain reaction classifier for lung cancer prognosis.
نویسندگان
چکیده
INTRODUCTION This prospective study aimed to develop a robust and clinically applicable method to identify patients with high-risk early-stage lung cancer and then to validate this method for use in future translational studies. METHODS Three published Affymetrix microarray data sets representing 680 primary tumors were used in the survival-related gene selection procedure using clustering, Cox model, and random survival forest analysis. A final set of 91 genes was selected and tested as a predictor of survival using a quantitative real-time polymerase chain reaction-based assay using an independent cohort of 101 lung adenocarcinomas. RESULTS The random survival forest model built from 91 genes in the training set predicted patient survival in an independent cohort of 101 lung adenocarcinomas, with a prediction error rate of 26.6%. The mortality risk index was significantly related to survival (Cox model p < 0.00001) and separated all patients into low-, medium-, and high-risk groups (hazard ratio = 1.00, 2.82, 4.42). The mortality risk index was also related to survival in stage 1 patients (Cox model p = 0.001), separating patients into low-, medium-, and high-risk groups (hazard ratio = 1.00, 3.29, 3.77). CONCLUSIONS The development and validation of this robust quantitative real-time polymerase chain reaction platform allows prediction of patient survival with early-stage lung cancer. Utilization will now allow investigators to evaluate it prospectively by incorporation into new clinical trials with the goal of personalized treatment of patients with lung cancer and improving patient survival.
منابع مشابه
Chromogenic in situ Hybridization Compared with Real Time Quantitative Polymerase Chain Reaction to Evaluate HER2/neu Status in Breast Cancer
Background and objective: The assessment of human epidermal growth factor receptor 2 (HER2) status has become of great importance in the diagnosis of breast cancer. The aim of this study was to investigate the diagnostic value of quantitative Polymerase Chain Reaction (qPCR) and Chromogenic In Situ Hybridization (CISH) to assess HER2 status of biopsy specimens. <...
متن کاملFluorescent in Situ Hybridization and Real-Time Quantitative Polymerase Chain Reaction to Evaluate HER-2/neu Status in Breast Cancer
Background:Breast cancer remains the most common and second lethal cancer in females. HER-2/neu is one of the most important amplified oncogene in breast cancer. The amplification of HER-2 is correlated with decreased survival, metastasis, and early recurrence. The amplification of HER-2/neu gene and synthesis of th...
متن کاملDevelopment and Evaluation of Real-Time Reverse Transcription Polymerase Chain Reaction Test for Quantitative and Qualitative Recognition of H5 Subtype of Avian Influenza Viruses
Avian influenza viruses (AIV) affect a wide range of birds and mammals, cause severe economic damage to the poultry industry, and pose a serious threat to humans. Highly pathogenic avian influenza viruses (HPAI) H5N1 were first identified in Southeast Asia in 1996 and spread to four continents over the following years. The viruses have caused high mortality in chickens and various bird species ...
متن کاملDevelopment of New Modified Simple Polymerase Chain Reaction and Real-time Polymerase Chain Reaction for the Identification of Iranian Brucella abortus Strains
Brucellosis is primarily a worldwide zoonotic disease caused by Brucella species. The genus Brucella contains highly infectious species that are classified as biological threat agents. In this regard, the identification of Brucella can be a time-consuming and labor-intensive process posing a real risk of laboratory-acquired infection to the laboratory staff. This stud...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer
دوره 6 9 شماره
صفحات -
تاریخ انتشار 2011